Protein side chain modeling with orientation-dependent atomic force fields derived by series expansions

نویسندگان

  • Shide Liang
  • Yaoqi Zhou
  • Nick V. Grishin
  • Daron M. Standley
چکیده

We describe the development of new force fields for protein side chain modeling called optimized side chain atomic energy (OSCAR). The distance-dependent energy functions (OSCAR-d) and side-chain dihedral angle potential energy functions were represented as power and Fourier series, respectively. The resulting 802 adjustable parameters were optimized by discriminating the native side chain conformations from non-native conformations, using a training set of 12,000 side chains for each residue type. In the course of optimization, for every residue, its side chain was replaced by varying rotamers, whereas conformations for all other residues were kept as they appeared in the crystal structure. Then, the OSCAR-d were multiplied by an orientation-dependent function to yield OSCAR-o. A total of 1087 parameters of the orientation-dependent energy functions (OSCAR-o) were optimized by maximizing the energy gap between the native conformation and subrotamers calculated as low energy by OSCAR-d. When OSCAR-o with optimized parameters were used to model side chain conformations simultaneously for 218 recently released protein structures, the prediction accuracies were 88.8% for χ(1) , 79.7% for χ(1 + 2) , 1.24 Å overall root mean square deviation (RMSD), and 0.62 Å RMSD for core residues, respectively, compared with the next-best performing side-chain modeling program which achieved 86.6% for χ(1) , 75.7% for χ(1 + 2) , 1.40 Å overall RMSD, and 0.86 Å RMSD for core residues, respectively. The continuous energy functions obtained in this study are suitable for gradient-based optimization techniques for protein structure refinement. A program with built-in OSCAR for protein side chain prediction is available for download at http://sysimm.ifrec.osaka-u.ac.jp/OSCAR/.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Side-Chain Orientation Dependent Potential Derived from Random-Walk Reference State for Protein Fold Selection and Structure Prediction

BACKGROUND An accurate potential function is essential to attack protein folding and structure prediction problems. The key to developing efficient knowledge-based potential functions is to design reference states that can appropriately counteract generic interactions. The reference states of many knowledge-based distance-dependent atomic potential functions were derived from non-interacting pa...

متن کامل

Discrete restraint-based protein modeling and the C -trace problem

We present a novel de novo method to generate protein models from sparse, discretized restraints on the conformation of the main chain and side chain atoms. We focus on C -trace generation, the problem of constructing an accurate and complete model from approximate knowledge of the positions of the C atoms and, in some cases, the side chain centroids. Spatial restraints on the C atoms and side ...

متن کامل

Size-dependent on vibration and flexural sensitivity of atomic force microscope

In this paper, the free vibration behaviors and flexural sensitivity of atomic force microscope cantilevers with small-scale effects are investigated. To study the small-scale effects on natural frequencies and flexural sensitivity, the consistent couple stress theory is applied. In this theory, the couple stress is assumed skew-symmetric. Unlike the classical beam theory, the new model contain...

متن کامل

Quantum Chemistry at Finite Temperature

In this article, we present emerging fields of quantum chemistry at finite temperature. We discuss its recent developments on both experimental and theoretical fronts. First, we describe several experimental investigations related to the temperature effects on the structures, electronic spectra, or bond rupture forces for molecules. These include the analysis of the temperature impact on the pa...

متن کامل

The intrinsic conformational features of amino acids from a protein coil library and their applications in force field development.

The local conformational (φ, ψ, χ) preferences of amino acid residues remain an active research area, which are important for the development of protein force fields. In this perspective article, we first summarize spectroscopic studies of alanine-based short peptides in aqueous solution. While most studies indicate a preference for the P(II) conformation in the unfolded state over α and β conf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of computational chemistry

دوره 32 8  شماره 

صفحات  -

تاریخ انتشار 2011